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Abstract. We present algorithms that reduce the time and space
needed to solve problems of finding all motifs common to a set of se-
quences. In particular, we give algorithms that (1) require time and space
linear in the size of the input, (2) succinctly encode the output so that
the time and space requirements depend on the number of motifs, not
directly on motif length, and (3) efficiently parallelize the enumeration.

1 Introduction

The problem of discovering short strings occurring approximately in each mem-
ber of a set of longer strings is important in computational biology. We refer to
the short strings as motifs, and the longer strings as sequences1. By “occurring
approximately”, we mean that motifs must match a segment of each sequence
with at most some specified number of mismatches.

The motif discovery problem abstracts many problems encountered in the
analysis of biology sequence data, where the sequences are molecular sequences
and motifs represent short biologically important patterns. A popular technique
for finding motifs is to enumeratively test all strings over the sequence alphabet
having length equal to the desired motif length. An advantage of the enumerative
approach is that it does just that; enumerative algorithms produces all possible
motifs for a set of sequences. This allows the discovered motifs, which posses a
certain combinatorial property, to be evaluated according to other criteria. In this
capacity, the enumerative algorithms can provide input to other algorithms that
filter motifs based on other properties. Formally, we define the motif enumeration
problem as follows:

Problem 1. The input is a set F = {S1, . . . , Sm} of strings over an alphabet Σ
such that |Si| ≤ n, 1 ≤ i ≤ m, and integers l and d such that 0 ≤ d < l ≤ n.
The solution is a set of motifs MF ⊆ Σl such that for each motif C ∈ MF and
each Si ∈ F , there exists a length l substring of Si that is Hamming distance
≤ d from C.
Hamming distance is defined, for equal length strings, as the number of mis-
matches between the strings. Note that it is sufficient, and often desirable, to
1 This terminology may conflict with terminology used elsewhere.
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produce a small encoding of MF , from which the motifs can be efficiently ex-
tracted.

There are two major computational challenges to enumerating motifs. The
first challenge is that the problem of deciding if MF = ∅ is NP-hard; practical
solutions are thus non-trivial. The second is that we are concerned with more
than simply the decision, so we may have to produce output of exponential size.

The paper is organized as follows. Section 2 describes previous work on the
problem. In Section 3 we describe the first algorithm, Census, that improves on
an algorithm of Sagot [9] and establishes an upper bound on the time and space
complexity that is linear in both the string length and the number of strings.
We also discuss parallelizations of the algorithm. In Section 4, we describe the
MotifIntersection algorithm, further reducing the upper bound on the time
complexity. The algorithm is based on a data structure that succinctly encodes
sets of motifs, and allows efficient set operations. In Section 5, we show the
problem admits an FPP algorithm, placing the corresponding decision version in
the subclass of fixed parameter tractable problems that are highly parallelizable
[3].

2 Background

Many algorithms have used enumerative strategies to find motifs in sets of se-
quences (e.g. [2] [7] [10] [11]). These algorithms each approach the problem dif-
ferently; most attempt to eliminate as much of the search space as possible.
Each, however, attempts to enumerate all strings of length l over the sequence
alphabet. This most naive form of search introduces a factor of Ω(|Σ|l) into the
time complexity. The benefit of this type of enumeration is that it requires space
bounded by a linear function of the size of the input.

New ground was broken when Sagot [9] introduced a different approach that
enumerates only those strings that are potential motifs, letting information from
the sequences guide the enumeration. This more intelligent search remains within
the (l, d)-neighborhood of each sequence. In the following definition, dH refers
to the Hamming distance.

Definition 1. (neighborhood) For a string S ∈ Σn, with n ≥ l, the (l, d)-
neighborhood of S is the set

{s′ : s′ ∈ Σl ∧ dH(s, s′) ≤ d for some substring s of S with |s| = l}.
For any string S, we use Nl,d(S) to denote the (l, d)-neighborhood of S. For a
family F of strings, the (l, d)-neighborhood of F is the set

{s′ : s′ ∈ Σl ∧ ∀S ∈ F , s′ ∈ Nl,d(S)},
and is denoted Nl,d(F).

We also define the value N =
∑d

i=0

(
l
i

)
(|Σ|−1)i, and note that this value appears

throughout our analysis. The significance of N is that for a string s with |s| = l,
N = |Nl,d(s)|.
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The method of Sagot has a time complexity of O(lm2nN), a space complex-
ity of O(lm2n), and has proved successful in practice [13]. We note that the
algorithm in [9] was actually designed with a “quorum” parameter, so that a
motif is only required to be common to some q ≤ m of the sequences.

3 Improved Time and Space Complexity

In this section we make an initial improvement to the time and space complexity
for the enumeration problem. We eliminate a factor of m from the requirements
of the algorithm of Sagot [9]. This brings the time complexity to O(lmnN),
and the space complexity to O(lmn). In Section 4 we further reduce the time
complexity to O(mnN).

3.1 The Census Algorithm

The algorithm in [9] employed a generalized suffix tree [6], and required that
each node indicate the subset of strings having the node’s label as a prefix. We
eliminate the use of generalized suffix trees, and therefore eliminate the sets
stored at each node. Analysis indicates that we have also eliminated the factor
of m in the time complexity without increasing the influence of the remaining
parameters.

Census begins with the construction, for each Si ∈ F , of the lexicographic
tree Ti encoding all length l substrings of Si, which requires O(lmn) time [1]. The
potential motifs of desired length l are not searched directly. The search process
iteratively searches for each prefix of a given motif in order to take advantage
of the fact that prefixes are shared by many potential motifs. This eliminates
redundant processing, as will be shown in the complexity analysis.

Let C be a (length ≤ l) motif for F . Define the family of sets F =
{F1, . . . , Fm} with respect to C as Fi = {(v, k) : v is a node in the tree Ti,
and 0 ≤ k ≤ d}, where k counts mismatches between the label of v and C, for
each 1 ≤ i ≤ m. Think of Fi as the frontier of nodes in Ti whose path labels are
of Hamming distance ≤ d from C. For any (v, k) ∈ Fi, the path label of node v
spells out an occurrence of C in Si. For any 1 ≤ i ≤ m and element (v, k) ∈ Fi,
the value of k is the number of mismatches between C and the path label of node
v in Ti. Given a character α ∈ Σ and a frontier set F defined with respect to a
motif C, the family of sets Fα = {Fα

1 , . . . , Fα
m} is the frontier set defined with

respect to the length |C|+ 1 motif Cα.
While searching the space of possible motifs, if any Fi ∈ F is found to be

empty, the search space is pruned. The emptiness condition implies that there
exists some member of F containing no occurrence of the motif presently being
searched. Pseudocode for the Census algorithm is provided in Algorithm 1. For
the initial call to Census, C is the empty string and F is the set of roots of the
trees Ti, each given an error value of 0.
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Algorithm 1: Pseudocode for the Census algorithm.
Input: A set of lexicographic trees F = {F1, . . . Fm} and a string C.
Output: All motifs for F .
Census(C, F )
1. for each character α ∈ Σ
2. for each Fi ∈ F
3. for each (v, k) ∈ Fi

4. if node v has a child v′ labeled with α
5. Fα

i ← Fα
i ∪ {(v′, k)}

6. if k < d
7. for each child v′ of v that is not labeled with α
8. Fα

i ← Fα
i ∪ {(v′, k + 1)}

9. if ∀Fα
i ∈ Fα, Fα

i 
= ∅
10. C′ ← Cα
11. if |C′| = l then output(C′)
12. else make the recursive call Census(C′, Fα)

Theorem 1. The time complexity of Census is O(lmnN).

Proof. The time complexity of the algorithm is proportional to the number of
motifs in the search space, multiplied by the size of the family of frontiers F that
must be constructed for each point in the search space. In the worst case, for
m strings of length n, there are O(nN) potential motifs for F . The maximum
size of the (l, d)-neighborhood of a string S of length n is (n − l + 1)N , and
this is achieved when the d-neighborhoods of all length l substrings of S are
disjoint. Further observe that this upper bound on the number of motifs in the
search space gives an upper bound on the search space traversed by the algorithm
when all (l, d)-neighborhoods of members of F completely overlap. Attaining this
limit on the search space requires that each Fi ∈ F have exactly one element.
For 1 ≤ j ≤ l, let Xj be the space of all motifs C for F such that |C| = j. Then
under the condition of complete (l, d)-neighborhood overlap for members of F :

|F |∑j≤l|Xj | < mn
∑

j≤l

(
j
d

)
(|Σ| − 1)d = O(lmnN).

Consider how the search space is affected should any Fi have more than one
element. The (l, d)-neighborhoods of substrings of Si would no longer be disjoint
and the d-neighborhood of Si would have at least one fewer member. Since each
increase in the size of a set Fi ∈ F , with respect to any motif C, decreases
the size of the search space by an equal amount, the situation of total (l, d)-
neighborhood overlap is the worst case. Hence, the overall running time of the
algorithm is O(lnmN). ��

The space complexity of Census is O(lmn), exactly the space required for the
lexicographic trees, since the frontier sets consist of nodes from the lexicographic
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trees, and no node exists simultaneously in more than one frontier set. We note
that if Census were modified to solve the quorum version as in [9], the time
complexity would increase by a factor of (m − q) for a quorum of q; the space
complexity would not be altered.

The Census algorithm was implemented in C and tested on a 1.4GHz Pen-
tium 3 processor. Simulated data consisted of sequences generated uniformly at
random from a 4 character alphabet. For (m, n, l, d) values of (1000, 1000, 12, 3),
Census required 95 minutes and 370 megabytes of memory; 4.5 hours and 97
megabytes was required for values of (100, 2000, 15, 4). The algorithm was also
tested on a dataset taken from the E. coli genome, with values (2645, 2000, 9, 2),
and required 37 minutes and 991 megabytes of memory.

3.2 Parallelizations

The nature of the search in the algorithm makes it a prime candidate for dis-
tributed search. Practical aspects of such distributed searching are facilitated
by the linear space requirements. The Census algorithm can be parallelized to
achieve O(1) supersteps within the bulk-synchronous parallel (BSP) model [12].
BSP models parallelism using virtual processors that are mapped during exe-
cution to a smaller number of actual processors. An algorithm’s computation
is broken into supersteps, units of processing and communication that represent
the necessary synchronization. All virtual processors must complete each specific
superstep before any proceed to the next superstep. A parallel algorithm with
a large superstep complexity is considered to be fine grained; it needs high syn-
chronization and short time intervals. If the number of supersteps is small, the
algorithm is coarse grained and requires little synchronization between virtual
processors, which is desirable for parallel algorithms. The algorithm is modified
as follows to partition the search space.

1. Each processor computes the prefixes of motifs for which it will search (these
prefixes are distributed uniformly among the processors). Each processor
searches for motifs, and when finished, broadcasts the number found.

2. With the information about the number of motifs each processor has found,
processor P computes the starting address it will use to write the lexico-
graphic tree into global memory. Then P writes the lexicographic tree en-
coding its motif set into global memory.

Theorem 2. For all 1 ≤ p ≤ N , the partitioned search space algorithm takes
O((N/p)mnl) time and requires O(mn) space per processor, while performing
O(1) supersteps.

Proof. The time complexity of the supersteps follows from the time complexity
of Census. This algorithm only needs to be synchronized after each step in the
modification description, so the number of supersteps is constant. ��

Another way to parallelize the algorithm is to assign each string in F to a
unique processor. Since the data for each input string is indexed in a separate
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lexicographic tree, this would be feasible for systems without shared memory.
This type of parallelization reduces the influence of the number of sequences (m)
on the time complexity of Census.

1. Each processor constructs the lexicographic trees corresponding to its as-
signed sequences.

2. If the present motif prefix has length l, a motif has been found (a situation
that can be handled in many ways). Otherwise, each processor makes the
appropriate updates to the frontier sets based on the present motif prefix.
When the frontiers have been updated, processors communicate whether or
not to extend the present motif prefix, or backtrack. This step is repeated
until the search is completed.

This is a fine grained parallelization, as the processors need to communicate
after examining each extension. As such, we also consider the time for the com-
munication required to direct the search.

Theorem 3. Using p processors, the problem can be solved in O(l(mn/p +
log p)N)) time and O(n) space per node.

Proof. The factor of N in the time complexity of Census corresponds to the
search space that is traversed; this factor remains untouched by the paralleliza-
tion. Similarly, the factor ln corresponds to the frontiers that must be main-
tained. Since disjoint sets of m/p frontiers are associated with distinct proces-
sors, they are updated independently in parallel, thus eliminating a factor of p
from the time complexity. The only additional work to be accounted for is that
required to determine when to backtrack. This requires communication, and es-
sentially computing a logical “or” of a value from each processor. Done carefully,
this requires O(log p) time. ��

4 Near Optimal Enumeration

In this section we describe how to eliminate a factor of l from the time complexity
required by the enumeration. The result is an algorithm that requires O(mnN)
time, and suggests an efficient parallelization that will be described in Section
5. The algorithm is based on a new data structure, the neighborhood tree, that
concisely encodes the (l, d)-neighborhood for a set of strings.

Definition 2. (neighborhood tree) For any set F of strings, each of length n ≥
l, the (l, d)-neighborhood tree Tl,d(F) for F is a rooted directed tree satisfying
four conditions: 1. each edge is labeled with a string; 2. any two edges out of the
same node have labels beginning with distinct characters; 3. any internal node
has out-degree at least 2; and 4. every string in z ∈ Nl,d(F) maps to some leaf
u of T such that the string formed by concatenating in order the labels on the
path from the root to u exactly spell out z, and every leaf of T is mapped to some
z ∈ Nl,d(F). When F = {S}, we write Tl,d(F) as Tl,d(S) for convenience.
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The (l, d)-neighborhood tree has the important property that, given a query
string s of length l, it is capable of answering whether s is contained in the
(l, d)-neighborhood of F , and can do so in time proportional to size of the query
(i.e. |s|). Our goal is to build and represent these structures in time and space
proportional to the number of leaves in the tree, which is exactly |Nl,d(F)|.
To accomplish this we must avoid explicitly representing the edge labels, as
doing so would require ω(1) space per node. Our method is inspired by the edge
compression used in linear time suffix tree algorithms [8], which represent edge
labels by indexing substrings of the underlying strings. The strategy does not
transfer directly to neighborhood trees since not all substrings of members of
Nl,d(F) occur exactly as substrings of members of F . The representation we use
is based on an observation about Tl,d(s) for a string s of length l.

Property 1. Let s be a string with |s| = l. For any edge (u, v) ∈ Tl,d(s), if the
string labeling edge (u, v) has length x > 1, then v is a leaf and the string
labeling (u, v) may differ by at most 1 position from the suffix of s having length
x. In addition, such a mismatch can only occur at the first position of the label.

Thus, in the restricted case of an (l, d)-neighborhood tree for a string s with
|s| = l, any edge label may be represented in constant space. It is sufficient
to index the beginning and end of a substring in s, and indicate the character
occupying the first position of the label (which, by Property 1, is the only position
where the character in the label may not match the character in the indexed
substring of s).

We describe an algorithm to construct (l, d)-neighborhood trees for strings
of length l. The reason we consider this restricted case is that the (l, d)-
neighborhood tree for a string S of length n > l may be obtained by taking
the union of the (l, d)-neighborhood trees for each length l substring of S. The
construction algorithm is based on the following recurrence. The symbol ◦ de-
notes concatenation and when applied to a set operates on each member of the
set.

Property 2. Let s and s′ be strings with |s| = l and |s′| = l− 1. If s = α ◦ s′ for
some α ∈ Σ, then

Nl,d(s) =
(
α ◦Nl−1,d(s′)

) ⋃ (
∪β∈Σ β ◦Nl−1,d−1(s′)

)
. (1)

The recursive characterization of a neighborhood suggests a recursive algorithm
for constructing a neighborhood tree. The information stored at each node in
the tree includes numbers indexing a substring in the underlying string, and a
modifier character that might override the first character indexed. We note that
for this restricted case, the modifier alone is sufficient since edges with labels
of length > 1 are incident on leaves, and their index is completely determined
by the depth of the leaf. The reason for using the indexes is that they will be
necessary later when constructing (l, d)-neighborhood trees for strings of length
> l. We also anticipate the extension to neighborhood trees for sets of strings,
and therefore assume the identity of each string is encoded along with the pair
of indexes. The following algorithm is based on the recursion in Property 2.
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Algorithm 2: Pseudocode for the BuildNeighborhood algorithm.
Input: The root of an (l, 0)-neighborhood tree for a string s. A distance
parameter d.
Output: The root of an (l, d)-neighborhood tree Tl,d(s) for s.
BuildNeighborhood(v, d)
1. if d > 0 and v is not a leaf
2. for each β ∈ Σ \ {α}
3. Create child uβ of v with index (depth(v)+1, depth(v)+1)

and modifier character β.
4. Create child xβ of uβ with index (depth(v) + 2, |s|) and

no modifier character.
5. BuildNeighborhood(uβ , d− 1)
6. Let xα be the original child of v. Create node uα with index

(depth(v)+1, depth(v)+1) and no modifier character. Incre-
ment the start index of xα, insert xα below uα, and replace
xα with uα as child of v.

7. BuildNeighborhood(uα, d)
8. return v

Lemma 1. For any string s, such that |s| = l, the (l, d)-neighborhood tree of s
can be built in O(N) time.

Proof. First, notice that the total number of leaves in the tree is O(N), since they
are in 1-to-1 correspondence with members of Nl,d(s). Because we use indexes
instead of explicitly representing edge labels, the size of each node is constant,
as is the time to create each node. Finally, since all nodes have out-degree 2 or 0,
the total number of nodes is proportional to the number of leaves in the tree. ��

After constructing Tl,d(sij) for each length l substring sij of each Si ∈ F ,
we take the union of these structures to obtain each Tl,d(Si). The intersection of
all Tl,d(Si) gives Tl,d(F). For two (l, d)-neighborhood trees Tl,d(s) and Tl,d(s′),
corresponding to strings s and s′, the union Tl,d(s)∪Tl,d(s′) is defined as the (l, d)-
neighborhood tree encoding Nl,d(s)∪Nl,d(s′). The intersection of neighborhood
trees is defined similarly with respect to the intersection of the neighborhoods.
The union and intersection operations are accomplished by recursively applying
the operations to subtrees. This requires being able to determine the extent
to which two nodes are identical, which requires determining the length of the
longest identical prefix between two edge labels. As an example, let s = abcd
and s′ = abba, and consider T4,0(s) and T4,0(s′) which each have two nodes.
The union T4,0(s) ∪ T4,0(s′) has four nodes (a root with one child that has two
children), and three edge labels (ab, cd and ba). In order to determine the length
(and label) of the edge labeled with ab while taking the union, we are required
to determine the length of the longest prefix of s and s′. Our goal is to do this in
constant time regardless of the length of the edge labels, so simply matching the
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strings does not suffice. The problem is handled using longest common extension
queries, as explained in the proof of the next lemma.

Lemma 2. The union and intersection operations for neighborhood trees can be
performed in time bounded by a linear function of the size of the input structures.

Proof. In a neighborhood tree resulting from a union or intersection operation,
the number of nodes is bounded by a linear function of the total number of nodes
in the trees being operated on. The union and intersection algorithms proceed
by recursively doing unions and intersections on the appropriate subtrees of the
input structures, and each node in the input structures need only be visited once.
When the length of each edge label is O(1), we need only spend constant time
at each node in the input structures to determine the identity of the nodes to be
created in the resulting structure. So for this restricted case, the set operations
take linear time.

The only complication arises when two edge labels of length ω(1) must be
compared to determine the length of their longest common prefix (as illustrated
by the example above). Sequentially matching individual characters requires time
proportional to the length of the shorter of the two edge labels. We use longest
common extension queries to speed up the comparison. Given a pair of start
indexes (i, j) for two substrings from (not necessarily distinct) strings S and S′,
the longest common extension for (i, j) is the length of the longest prefix of suffix
i of S that matches a prefix of suffix j of S′. The longest common extension for
the starting indexes of two edge labels is equal to the length of the longest prefix
that is identical in the two labels.

After linear time preprocessing, longest common extension queries can be
done in constant time. This is implemented by (1) creating a generalized suffix
tree for the strings, which can be done in linear time by a number of methods,
and (2) augmenting the tree for lowest common ancestor queries, which can
also be done in linear time (for details see [6]). After creating and augmenting
the generalized suffix tree, lowest common ancestor queries can be answered in
constant time. The depth of the lowest common ancestor for two leaves gives the
length of the longest common extension for the corresponding suffixes.

Therefore, even when arbitrary length edge labels are allowed, the edge labels
can be compared in constant time during union and intersection operations. So
linear time is sufficient for union and intersection operations in the general case.

��

While enumerative algorithms must have their running times dependent on
the output size, we avoid this by encoding the set of motifs in a structure instead
of producing each motif. The following algorithm is the best known that solves
this modified problem; it also provides the best known upper bound on the
complexity of the corresponding decision problem.
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Algorithm 3: Pseudocode for the MotifIntersection algorithm.
Input: A set of strings F and two integers d < l.
Output: An edge-compressed neighborhood tree Tl,d(F) encodingMF .
MotifIntersection(F , l, d)
1. for each Si ∈ F
2. for each substring sij of Si such that |sij | = l
3. construct Tl,d(sij) using BuildNeighborhood
4. Tl,d(Si)← ∪1≤j≤n−l+1Tl,d(sij)
5. Tl,d(F)← ∩1≤i≤mTl,d(Si)
6. return Tl,d(F)

Theorem 4. The time complexity of MotifIntersection is O(mnN).

Proof. By Lemma 1, each call to BuildNeighborhood requires O(N) time.
There are O(m) union operations, which by Lemma 2, each require O(nN)
time. Also by Lemma 2, the intersection operation requires at most O(mnN)
time. ��
Once the structure has been built, the complete list of motifs can be extracted in
O(lN) time, so the enumeration can be done in O(mnN + lN) = O(mnN) time.
The space requirements of the algorithm are the same as the time requirements.

5 An FPP Algorithm

Of more theoretical interest is the complexity of the problem when we are al-
lowed a polynomial number of processors. The class of algorithms that achieve
a logarithmic running time using polynomial number of processors is called NC
[4]. Two analogues of NC have been defined within the context of parameter-
ized complexity [3]. For a problem Π with parameter k, the class PNC con-
tains problems with algorithms requiring at most O(f(k)(log |x|)g(k)) time, using
O(h(k)|x|c) processors, on instance x ∈ Π, for some constant c and arbitrary
functions f, g, h. The definition of the class FPP modifies the allowed time to
be O(f(k)(log |x|)c), so FPP ⊆ PNC ⊆ FPT (see [5] for definitions of the basic
concepts of parameterized complexity).

The algorithm can be seen as an adaptation of the MotifIntersection al-
gorithm, where the set operations proceed from the leaves to the root of a binary
processor tree. For any processor p at an internal node in this tree, subscripts L
and R indicate data held by the left and right children of p. Leaf processors are
assigned substrings of the strings in F , and all processors assigned a substring
from the same string are arranged consecutively. For the purpose of illustration,
we assume both m and n − l + 1 are powers of 2. Our algorithm requires that
the neighborhood trees do not have compressed edges, so that construction of
the suffix trees required for longest common extension queries may be avoided.
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The simple lexicographic trees used instead have a number of nodes bounded by
f(|Σ|, l) = O(|Σ|l).

Algorithm 4: Pseudocode for the FPPMotifs algorithm.
Input: A set F of strings.
Output: A lexicographic tree encodingMF .
FPPMotifs(F)
1. for each leaf processor p (in parallel)
2. (p computes) Tij ← BuildNeighborhood(sij)
3. for k ← 2 to log(n− l + 1)
4. for each processor p (in parallel)
5. if p is at level k then (p computes) T ← TL ∪ TR

6. for k ← log(n− l + 1) + 1 to log(m(n− l + 1))
7. for each processor p (in parallel)
8. if p is a level k then (p computes) T ← TL ∩ TR

9. return T

The above algorithm establishes the following result concerning the parallel
parameterized complexity of the motif enumeration problem.

Theorem 5. The motif enumeration problem can be solved in
O(f(|Σ|, l) log(mn)) time using O(mn) processors.

6 Discussion

We have presented an algorithm for enumerating all motifs for a set of sequences.
This algorithm, presented as Census and MotifIntersection in two stages of
incremental improvement, improves over the best previously known algorithm, in
that the running time has been reduced by eliminating a factor of m, the number
of strings, and of l, the length of the motifs sought. The space requirements have
also been reduced by eliminating a factor of m. These improvements advance
the frontier of which parameter values are usable for motif enumeration.

Given the potentially exponential size of the output, this algorithm must be
close to optimal in its running time for the worst case. Consider the task of any
enumerative algorithm that tries to obtain all motifs for a set of sequences. In the
worst case, there are N = Θ(n

(
l
d

)|Σ|d) motifs, so no algorithm can eliminate the
factor nN = n

(
l
d

)|Σ|d from the time complexity. Also, the factor mn represents
the size of the input, so those two cannot be separated; any algorithm must thus
take at least Ω(mn+nN) = Ω(mn+n

(
l
d

)|Σ|d) time. It seems unlikely that the
factor m can be separated from N =

(
l
d

)|Σ|d through some sort of preprocessing
without introducing a factor of |Σ|l into the time complexity.

This algorithm can be parallelized in a variety of ways. It admits both a coarse
and a finer grained parallelism. The coarse grained parallel algorithm reduces the
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time by a factor of p, for any number of processors 1 ≤ p ≤ N , though it requires
O(mn) space for each processor. The finer grained algorithm, on the other hand,
runs in O(l(mn/p + log p)N) time and O(n) space for each of p processors. Our
motif enumeration can also be parallelized to run in O(f(|Σ|, l) log(mn)) time,
using a linear number of processors, which positions the problem in FPP.
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